M1. (a)) (i)	Constant speed	2
	(ii)	Accelerates to higher constant speed	1
(t	o) (i)	Points correct (allow one major or two minor mistakes) Line correct (for their points)	2
	(ii)	5 m/s or 5 <i>gets 2 marks</i> or correct unit <i>gets 1 mark mark</i>	3
			U
(c	c) (i)	50 s or 50 gets 2 marks or t = d/v	
		gets 1 mark	3
	(ii)	Line correct (of gradient 4 and spans 30 consecutive seconds)	1
(c	d) (i)	0.04 or 6/15 gets 2 marks	
		or a = v/t gets 1 mark	3

M2.	(a)	gravitational / gravity / weight do not accept gravitational potential	1
	(b)	accelerating accept speed / velocity increases	1
		the distance between the drops increases	1
		but the time between the drops is the same accept the time between drops is (always) 5 seconds accept the drops fall at the same rate	1
	(c)	 (i) any one from: speed / velocity (condition of) brakes / road surface / tyres weather (conditions) accept specific examples, eg wet / icy roads accept mass / weight of car friction is insufficient reference to any factor affecting thinking distance negates this answer 	1
		 (ii) 75 000 allow 1 mark for correct substitution, ie 3000 × 25 provided no subsequent step shown or allow 1 mark for an answer 75 or allow 2 marks for 75 k(+ incorrect unit), eg 75 kN 	

joules / J

do **not** accept j an answer 75 kJ gains **3** marks for full marks the unit and numerical answer must be consistent

[8]

МЗ.	(a)	It will have a constant speed.	1
	(b)	distance travelled = speed × time	1
	(c)	a = <u>18 - 9</u> 6	1
		a = 1.5 allow 1.5 with no working shown for 2 marks	1
	(d)	resultant force = mass × acceleration	1
	(e)	F = (1120+80) × 1.5	1
		F = 1800 (N) allow 1800 with no working shown for 2 marks	1
	(f)	accept their 10.3 × 1200 correctly calculated for 2 marks $18^2 - 9^2 = 2 \times 1.5 \times s$	1
		$s = 18^2 - 9^2 / 2 \times 1.5$	

allow 81 (m) with no working shown for **3** marks accept answer using their 10.3 (if not 1.5) correctly calculated for **3** marks

(g) Level 2 (3–4 marks):

A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that include references to the numerical factor.

Level 1 (1–2 marks):

Simple statements are made. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

- doubling speed increase the kinetic energy
- kinetic energy increases by a factor of 4
- work done (by brakes) to stop the car increases
- work done increases by a factor of 4
- work done is force × distance and braking force is constant
- so if work done increases by 4 then the braking distance must increase by 4

4

M4. (a) (i) 20

20 000 either order accept ringed answers in box

(ii) (frequency) above human range accept pitch for frequency

or

(frequency) above 20 000 (Hz) do **not** accept outside human range allow ecf from incorrect value in **(a)(i)**

(iii) any one from:

pre-natal scanning accept any other appropriate scanning use do not accept pregnancy testing
removal / destruction of kidney / gall stones
repair of damaged tissue / muscle accept examples of repair, eg alleviating bruising, repair scar damage, ligament / tendon damage, joint inflammation

accept physiotherapy

- accept curing prostate cancer or killing prostate cancer cells removing plaque from teeth cleaning teeth is insufficient
- 1

1

1

1

(b) 7.5×10^{-4} (m) $1.5 \times 10^{3} = 2.0 \times 10^{6} \times \lambda$ gains **1** mark

(c) for reflected waves

must be clear whether referring to emitted or detected / reflected waves if not specified assume it refers to reflected wave

any **two** from:

- frequency decreased
- wavelength increased
- intensity has decreased

allow amplitude / energy has decreased allow the beam is weaker

[8]